大语言模型基础

大语言基础

GPT : Improving Language Understanding by Generative Pre-Training
提出背景

从原始文本中有效学习的能力对于减轻自然语言处理中对监督学习的依赖至关重要。很多深度学习方法需要大量人工标注的数据,限制了它们在很多领域的应用,收集更多的人工标注数据耗时且费钱。而且在有大量标注数据情况下,无监督学习到的好的向量表示能表现的更好。

但是从无标注的文本中利用信息有下面两个挑战

  1. 不清楚那种优化目标能最有效的向量表示,NLP中不同的任务(文本推理、文本问答、文本相似度评估等)用不同的目标,使得在仅在当前任务得到最优结果。
  2. 将学习到的文本表示迁移到目标任务上面的最有效的方法还没有共识,有的改模型结构,有的增加辅助目标。

GPT使用无监督的预训练(pre-training)和有监督的精调(fine-tuning)这种半监督的方式来解决这个问题,目标就是学习一个通用的向量表示,大量的下游任务仅需要做一点调整即可。

评估

四类语音理解任务:自然语言推断、问答、语义相似性、文档分类。

方案详情

两阶段,第一阶段在一个大的文本语料库上面学习一个大容量的语言模型,第二阶段针对下游具体任务精调。

第一阶段:Unsuperviserd pre-training
对于token语料库 U = { u 1 , u 2 , . . . , n n } \mathcal {U}=\{u_1,u_2, ..., n_n\} U={u1,u2,...,nn},用标准的语言建模目标最大化下面的似然函数
L 1 ( U ) = ∑ i log ⁡ P ( u i ∣ u i − k , . . . , u i − 1 ; Θ ) L_1(\mathcal{U} ) = \sum_i \log P(u_i|u_{i-k}, ..., u_{i-1};\Theta) L1(U)=ilogP(uiuik,...,ui1;Θ)
这里 k k k表示上下文窗口size大小,模型参数 Θ \Theta Θ,使用SGD训练。

U = ( u − k , . . . , u − 1 ) U=(u_{-k},...,u_{-1}) U=(uk,...,u1)表示上下文token向量, n n n表示decoder层数, W e W_e We表示token的Embedding矩阵, W p W_p Wp表示位置向量矩阵
h 0 = U W e + W p h_0=UW_e+W_p h0=UWe+Wp
h l = t r a n s f o r m e r _ b l o c k ( h l − 1 ) h_l=\mathrm{transformer\_block}(h_{l-1}) hl=transformer_block(hl1)
P ( u ) = s o f t m a x ( h n W e T ) P(u)=\mathrm{softmax}(h_nW_e^T) P(u)=softmax(hnWeT)

GPT参数量计算,参考Attention机制

使用Transformer的decoder,因为没有encoder,这里去掉了decoder里面需要encoder输入的multi-head attention模块,保留了masked multi-head attention。层数6->12,embedding维度512->768,注意力头数head_num 8->12,FFN层的隐层维度1024->3072。

在这里插入图片描述

这里 N = 4 , d = 768 , V = 40000 N=4,d=768,V=40000 N=4d=768V=40000
GPT预训练模型大小为
12 ∗ ( ( 4 + 2 ∗ 4 ) ∗ 76 8 2 + ( 5 + 4 ) ∗ 768 ) + 40000 ∗ 768 = 115737600 = 115 M 12*((4+2*4)*768^2+(5+4)*768)+40000*768=115737600=115\mathrm M 12((4+24)7682+(5+4)768)+40000768=115737600=115M
GPT还有最后的一个线性输出层,参数量为 d ∗ V d*V dV,加上精调线性层的任务参数,总量为
12 ∗ ( ( 4 + 2 ∗ 4 ) ∗ 76 8 2 + ( 5 + 4 ) ∗ 768 ) + 40000 ∗ 768 + 768 ∗ 40000 + 768 ∗ 40000 = 146457600 = 146 M 12*((4+2*4)*768^2+(5+4)*768)+40000*768 + 768*40000 + 768*40000 =146457600=146\mathrm M 12((4+24)7682+(5+4)768)+40000768+76840000+76840000=146457600=146M

第二阶段:fine-tuning
精调阶段的线性层

P ( y ∣ x 1 , . . . , x m ) = s o f t m a x ( h l W y ) P(y|x^1,...,x^m)=\mathrm{softmax}(h_lW_y) P(yx1,...,xm)=softmax(hlWy)
精调阶段最大化下面的似然函数
L 2 ( C ) = ∑ ( x , y ) log ⁡ P ( y ∣ x 1 , . . . , x m ) L_2(C)=\sum_{(x,y)} \log P(y|x^1,...,x^m) L2(C)=(x,y)logP(yx1,...,xm)
最终的似然函数

L 3 = L 2 + L 1 L_3 = L_2 + L_1 L3=L2+L1

模型结构
在这里插入图片描述
所有任务,都需要插入开始和结束符;
对于文本推断任务,把前提和假设用分隔占位符concat起来;
对于语义相似评估任务,因为没有顺序,所以讲text1和text2连接起来作为一个输入,同时将text2和text1连接起来作为输出,经过各个的Transformer后concat起来;
多项选择任务,把context和各个候选答案分别concat起来作为输入;

实验

数据集:BookCorpus,超过7000本书,
在这里插入图片描述

预训练参数配置
在这里插入图片描述
精调参数配置
在这里插入图片描述

在文本推断任务的表现
在这里插入图片描述
在问答任务的表现
在这里插入图片描述
在文本分类任务的表现
在这里插入图片描述
Transformer层数的影响(下面左图),层数越大效果越好;比较Zero-shot的表现,和LSTM比较,Transformer随更新步数增长效果更好,LSTM就差很多,预训练的模型容量比较重要。
在这里插入图片描述
消融分析
精调阶段使用/不使用辅助的LM目标(aux LM);去掉预训练;相同层数的LSTM(单层2048个unit);
在这里插入图片描述

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
提出背景

GPT是从左到右单向的语言模型,ELMo也是单向的(单向的从左到右和单向的从右到左,然后concat到一起),单向的语言模型会限制它在下游的表现。
BERT提出双向的Transformer模型

方案详情

示意图如下
在这里插入图片描述
BERT的输入包括三部分,Token Embedding、Segment Embedding(句子pair中的句子A还是句子B)、Position Embedding
在这里插入图片描述

和其他结构比较
在这里插入图片描述
BERT是双向的Self-Attention,既可以看到前面的token,也可以看到后面的token,BERT的目标与GPT不一样了,GPT是根据前面的词预测后面的词,BERT是根据前后的词预测当前位置的词,类似于完形填空。

为此BERT引入了掩码语言任务(Masked LM),随机mask一个token,然后根据这个token之前及之后的token来预测这个token;mask的token用[MASK]占位符替代,在每个sequence里面随机mask15%的比例的token。但是[MASK]这个token并不在fine-tuning阶段出现,为了缓解预训练和精调之间这种不一致,预训练在mask的时候并不总是用[MASK]这个token代替,80%的概率用[MASK]代替,10%的概率随机选择一个token代替,10%的概率就用原来的token不做替换。
这里mask策略也是调参调出来的
在这里插入图片描述

示意图如下:
在这里插入图片描述
这里最上面是 MLM 的多分类任务,多出的这个线性层矩阵 W ∈ R d i m ∗ V W \in R^{dim*V} WRdimV是和输入的词汇表 embedding 矩阵共享的,就是多了一个偏置 b ∈ R 1 ∗ V b \in R^{1* V} bR1V,也就是此处多了 V V V个模型参数。

很多NLP的任务像问答、推断都是理解两个句子的关系,语言模型不容易直接识别到时哪种任务,为了使模型理解两个句子之间的关系,引入了下一个句子预测任务(Next Sentence Prediction , NSP),构造样本的时候,句子A后面50%的概率是后面接着的句子B(label标记为IsNext),50%的概率从语料库从语料库随机选(label标记为NotNext)
最上面是个二分类任务,有一个线性矩阵 W ∈ R d i m ∗ 2 W \in R^{dim*2} WRdim2 来表示。

fine-tuning细节和GPT一致

实验

实验配置, B E R T B A S E \mathrm {BERT_{BASE}} BERTBASE 为了和GPT对比,和GPT的参数配置几乎完全一样。
B E R T B A S E \mathrm {BERT_{BASE}} BERTBASE L=12,H=768,A=12
B E R T L A R G E \mathrm {BERT_{LARGE}} BERTLARGE L=24,H=1024,A=16

token数量(V)和GPT不一样,其他一致, N = 4 , d = 768 , V = 32000 N=4,d=768,V=32000 N=4d=768V=32000,不算后面fine-tuning阶段线性层的参数
B E R T B A S E \mathrm {BERT_{BASE}} BERTBASE预训练模型大小为(加上每个位置的 embedding 512768、NSP 二分类任务参数 7682、MLM 多分类任务参数 32000(分类任务权重矩阵和词表 embedding 矩阵共享,但是有独立的偏置,参数量32000))
12 ∗ ( ( 4 + 2 ∗ 4 ) ∗ 76 8 2 + ( 5 + 4 ) ∗ 768 ) + 32000 ∗ 768 + 512 ∗ 768 + 768 ∗ 2 + 32000 = 110020352 = 110 M 12*((4+2*4)*768^2+(5+4)*768)+32000*768 + 512*768+768*2 + 32000=110020352=110\mathrm M 12((4+24)7682+(5+4)768)+32000768+512768+7682+32000=110020352=110M
B E R T L A R G E \mathrm {BERT_{LARGE}} BERTLARGE预训练模型大小为
24 ∗ ( ( 4 + 2 ∗ 4 ) ∗ 102 4 2 + ( 5 + 4 ) ∗ 1024 ) + 32000 ∗ 1024 + 512 ∗ 1024 + 1024 ∗ 2 + 32000 = 335537408 = 335 M 24*((4+2*4)*1024^2+(5+4)*1024)+32000*1024 + 512*1024 + 1024*2 + 32000=335537408=335\mathrm M 24((4+24)10242+(5+4)1024)+320001024+5121024+10242+32000=335537408=335M
实验效果
在这里插入图片描述

RoBERTa: A Robustly Optimized BERT Pretraining Approach

BERT的升级优化版本

提出背景

BERT训练不充分,还有很大的空间
提升措施:

  1. 让模型训练的更久、使用更大的batch size,使用更多的数据
  2. 去除下一个句子预测任务NSP
  3. 在更长的sequence序列上面训练
  4. 在训练数据中动态改变mask方式
方案详情

增加语料库

  1. BOOKCORPUS加上英语WIKIPEDIA,这是BERT用的语料库(16GB)
  2. CC-NEWS,这是RoBERTa从CommonCrawl新闻数据集手机的,包含6300万英语新闻文章(2016年至2019年)(76GB)
  3. OPENWEBTEXT开源的WebText语料库,从Reddit上面根据URL抽取的web内容(38GB)
  4. STORIES包含了过滤的CommonCraw数据子集(31GB)

下游任务评估基准
GLUE:The General Language Understanding Evaluation,包含9个数据集来评估自然语言理解。
SQuAD:The Stanford Question Answering Dataset 提供一个上下文的段落及以问题,任务是通过抽取上下文回答问题。
RACE:The ReAding Comprehension from Examinations 大规模的阅读理解数据集,包含28000篇文章和100000个问题,来自中国的中学英文考试题目。

改进BERT
配置和 B E R T B A S E \mathrm {BERT_{BASE}} BERTBASE一样 (L=12, H=768, A=12, 110M参数量)
BERT模型在数据预处理的时候就mask好了,称为静态mask(static masking)数据复制了10份,在40个epoch里面,每份训练数据会相同mask4次。这里采用动态mask(dynamic masking)训练数据每次都是动态mask,保证训练时不会有重复的mask数据。动态masking效果更好,后面的评测均用动态masking。
在这里插入图片描述
原始BERT里面有个NSP任务,预测下一个句子的任务,去掉NSP会影响效果,但是有很多质疑的研究,起作用的主要是MLM,并不是NSP,为此做了一些消融实验来验证。

SEGMENT-PAIR+NSP:原始的BERT的方式,每个输入是一个Segment pair对,每个Segment可以包含多个自然句子,多个句子的总长度不超过512个tokens。
SENTENCE-PAIR+NSP:每个输入是一个自然句子pair对,因为这些句子显著低于512个tokens,因此增大batch size使得batch内总的token数量与SEGMENT-PAIR+NSP相似,也有NSP loss。
FULL-SENTENCES:每个输入是从一个或者多个文档中连续采样得来的,每个输入最多512个tokens,输入可能跨文档,如果跨文档,增加一个额外的分割token在里面,同时去除NSP loss。
DOC-SENTENCES:构造方式和FULL-SENTENCES类似,就是句子不跨文档。那么采样文档末尾的句子的时候,token长度可能小于512个,那就动态增加batch size,使得batch内的token和FULL-SENTENCES相似。

结果如下:
SEGMENT-PAIR+NSP vs SENTENCE-PAIR+NSP 说明使用单个句子模型没法学习到长距离依赖关系。
FULL-SENTENCES vs SEGMENT-PAIR+NSP:说明去除NSP loss会提升下游任务表现
FULL-SENTENCES vs DOC-SENTENCES:限制sequence来自同一个文档有轻微提升,但是batch size是动态的,为了对比方便,后面都使用FULL-SENTENCES这一组。
在这里插入图片描述
更大的batch size
更大的batch size带来更好的效果
在这里插入图片描述
文本编码方式
Byte-Pair Encoding(BPE)是字符级和单词级表示的混合,该编码方案可以处理自然语言语料库中常见的大量词汇。BPE不依赖于完整的单词,而是依赖于子词(sub-word)单元,这些子词单元是通过对训练语料库进行统计分析而提取的,其词表大小通常在 1万到 10万之间。
原始的BERT使用的是字符级的编码,词汇量30K,RoBERTa使用BPE编码,词汇量50K,相对 B E R T B A S E \mathrm {BERT_{BASE}} BERTBASE B E R T L A R G E \mathrm {BERT_{LARGE}} BERTLARGE会多出15M到20M的参数量。

实验效果

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/780661.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【鸿蒙学习笔记】MVVM模式

官方文档:MVVM模式 [Q&A] 什么是MVVM ArkUI采取MVVM Model View ViewModel模式。 Model层:存储数据和相关逻辑的模型。View层:在ArkUI中通常是Component装饰组件渲染的UI。ViewModel层:在ArkUI中,ViewModel是…

【Java】垃圾回收学习笔记(二):分代假说与垃圾回收算法

文章目录 0. 分代收集理论分代假说分代GC定义 1. 垃圾回收算法1.1 标记清除(Mark-Sweep)算法优点缺点 1.2 标记复制算法优点缺点为什么是8:1:1? 1.3 标记整理算法优点缺点 2. 是否移动? 0. 分代收集理论 分代假说 现在多数JVM G…

子数组按位与为k

注意这里的子数组是连续的非空的数组&#xff0c;我们要学会与处理就是求交集 class Solution { public:long long countSubarrays(vector<int>& nums, int k) {long long ans 0;for (int i 0; i < nums.size(); i) {int x nums[i];for (int j i - 1; j > …

MATLAB 2024b 更新了些什么?

MATLAB 2024b版本已经推出了预览版&#xff0c;本期介绍一些MATLAB部分的主要的更新内容。 帮助浏览器被移除 在此前的版本&#xff0c;当我们从MATLAB中访问帮助文档时&#xff0c;默认会通过MATLAB的帮助浏览器&#xff08;Help browser&#xff09;。 2024b版本开始&…

【Linux】压缩命令——gzip,bzip2,xz

1.压缩文件的用途与技术 你是否有过文件太大&#xff0c;导致无法以正常的E-mail方式发送&#xff1f;又或学校、厂商要求使用CD或DVD来做数据归档之用&#xff0c;但是你的单一文件却都比这些传统的一次性存储媒介还要大&#xff0c;那怎么分成多块来刻录&#xff1f;还有&am…

[搭建个人网站] 云服务器 or 本地环境搭建

别人没有的&#xff0c;你有&#xff0c;你就牛。 面试&#xff0c;吹牛皮的时候 都可以拉出来溜溜 本文介绍2种搭建网站模式方式&#xff1a;区别嘛&#xff08;花钱跟不花钱&#xff09; 花钱&#xff1a; 1. 先购买个域名。。&#xff08;这里就不多介绍了&#xff0c;随便…

昇思学习打卡-9-ResNet50图像分类

文章目录 网络介绍数据可视化部分网络实现Building Block结构BottleNet模块 模型训练推理结果可视化学习总结优点不足 网络介绍 在ResNet网络提出之前&#xff0c;传统的卷积神经网络都是将一系列的卷积层和池化层堆叠得到的&#xff0c;但当网络堆叠到一定深度时&#xff0c;…

STM32崩溃问题排查

文章目录 前言1. 问题说明2. STM32&#xff08;Cortex M4内核&#xff09;的寄存器3. 崩溃问题分析3.1 崩溃信息的来源是哪里&#xff1f;3.2 崩溃信息中的每个关键字代表的含义3.3 利用崩溃信息去查找造成崩溃的点3.4 keil5中怎么根据地址找到问题点3.5 keil5上编译时怎么输出…

C++模板元编程(二)——完美转发

完美转发指的是函数模板可以将自己的参数“完美”地转发给内部调用的其它函数。所谓完美&#xff0c;即不仅能准确地转发参数的值&#xff0c;还能保证被转发参数的左、右值属性不变。 文章目录 场景旧的方法新的方法内部实现参考文献 场景 思考下面的代码&#xff1a; templ…

深度学习之网络构建

目标 选择合适的神经网络 卷积神经网络&#xff08;CNN&#xff09;&#xff1a;我们处理图片、视频一般选择CNN 循环神经网络&#xff08;RNN&#xff09;&#xff1a;我们处理时序数据一般选择RNN 超参数的设置 为什么训练的模型的错误率居高不下 如何调测出最优的超参数 …

【pytorch20】多分类问题

网络结构以及示例 该网络的输出不是一层或两层的&#xff0c;而是一个十层的代表有十分类 新建三个线性层&#xff0c;每个线性层都有w和b的tensor 首先输入维度是784&#xff0c;第一个维度是ch_out,第二个维度才是ch_in(由于后面要转置)&#xff0c;没有经过softmax函数和…

C++ 引用——引用的本质

本质&#xff1a;引用的本质在c内部实现是一个指针常量 C推荐用引用技术&#xff0c;因为语法方便&#xff0c;引用本质是指针常量&#xff0c;但是所有的指针操作编译器都帮我们做了 示例&#xff1a; 运行结果&#xff1a;

C++初学者指南-4.诊断---valgrind

C初学者指南-4.诊断—Valgrind Valgrind&#xff08;内存错误检测工具&#xff09; 检测常见运行时错误 读/写释放的内存或不正确的堆栈区域使用未初始化的值不正确的内存释放&#xff0c;如双重释放滥用内存分配函数内存泄漏–非故意的内存消耗通常与程序逻辑缺陷有关&#xf…

水箱高低水位浮球液位开关工作原理

工作原理 水箱高低水位浮球液位开关是一种利用浮球随液位升降来实现液位控制的设备。其基本原理是浮球在液体的浮力作用下上下浮动&#xff0c;通过磁性作用驱动与之相连的磁簧开关的开合&#xff0c;从而实现液位的高低控制和报警。当液位升高时&#xff0c;浮球上浮&#xf…

cmake find_package 使用笔记

目录 1 find_package2 config mode2.1 搜索的文件名2.2 搜索路径 3 module mode3.1 搜索的文件名3.2 搜索路径 参考 1 find_package 这是官方文档 下面是学习总结&#xff1a; 首先是find_package的作用是什么&#xff1f;引入预编译的库。 find_package有两种模式&#xff1a…

C语言 指针和数组——指针和二维数组之间的关系

目录 换个角度看二维数组 指向二维数组的行指针 按行指针访问二维数组元素 再换一个角度看二维数组 按列指针访问二维数组元素 二维数组作函数参数 指向二维数组的行指针作函数参数 指向二维数组的列指针作函数参数​编辑 用const保护你传给函数的数据 小结 换个角度看…

使用antd的<Form/>组件获取富文本编辑器输入的数据

前端开发中&#xff0c;嵌入富文本编辑器时&#xff0c;可以通过富文本编辑器自身的事件处理函数将数据传输给后端。有时候&#xff0c;场景稍微复杂点&#xff0c;比如一个输入页面除了要保存富文本编辑器的内容到后端&#xff0c;可能还有一些其他输入组件获取到的数据也一并…

Win10安装MongoDB(详细版)

文章目录 1、安装MongoDB Server1.1. 下载1.2. 安装 2、手动安装MongoDB Compass(GUI可视工具)2.1. 下载2.2.安装 3、测试连接3.1.MongoDB Compass 连接3.2.使用Navicat连接 1、安装MongoDB Server 1.1. 下载 官网下载地址 https://www.mongodb.com/try/download/community …

『大模型笔记』《Pytorch实用教程》(第二版)

『大模型笔记』《Pytorch实用教程》(第二版) 文章目录 一. 《Pytorch实用教程》(第二版)1.1 上篇1.2 中篇1.3 下篇1.4 本书亮点1.5 本书内容及结构二. 参考文献🖥️ 配套代码(开源免费):https://github.com/TingsongYu/PyTorch-Tutorial-2nd📚 在线阅读(开源免费)…

nginx相关概念(反向代理、负载均衡)

1 Nginx 是什么 Nginx是一款轻量级的Web 服务器&#xff0c;其特点是占有内存少&#xff0c;并发能力强 2 Nginx 反向代理 正向代理代替客户端去发送请求反向代理代替服务端接受请求 2.1 正向代理 若客户端无法直接访问到目标服务器 server 则客户端需要配置代理服务器 pr…